NCP1028
Figure 24. A typical startup sequence showing the V CC capacitor
voltage evolution versus time.
Suppose our power supply takes 10 ms (t startup ) to bring
the output voltage to its target value. We know that the
switcher consumption is around 2.0 mA (I CC1 ). Therefore,
we can calculate the amount of capacitance we need, to
hold V CC above 7.5 V at least for 10 ms while delivering
2.0 mA:
C w
ICC1tstartup
D VCC
or, by replacing with the above values,
C w 2m · 10 m w 20 m F then select a 33 m F for the V CC
1
capacitor.
Fault Condition – Short-Circuit on V CC
In some fault situations, a short-circuit can purposely
occur between V CC and GND. In high line conditions
(V HV = 370 V DC ) the current delivered by the startup
device will seriously increase the junction temperature. For
instance, since IC1 equals 3.0 mA (the min corresponds to
Figure 25. The startup source now features a
dual-level startup current.
the highest T J ), the device would dissipate 370 3m=
1.1 W. To avoid this situation, the controller includes a
novel circuitry made of two startup levels, IC1 and IC2. At
C
The first startup period is calculated by the formula
V=I t, which implies a 33 m 1.3/650 m = 66 ms
powerup, as long as V CC is below a 1.3 V level, the source
delivers IC1 (around 650 m A typical), then, when V CC
reaches 1.3 V, the source smoothly transitions to IC2 and
delivers its nominal value. As a result, in case of
short-circuit between V CC and GND, the power dissipation
will drop to 370 650 m = 240 mW. Figure 25 portrays
this particular behavior.
startup time for the first sequence (t 1 ). The second
sequence (t 2 ) is obtained by toggling the source to 4.0 mA
with a delta V of VCC ON – VCCth = 8.5 – 1.5 = 7.0 V,
which finally leads to a second startup time of
7 33 m /6.0 m = 39 ms. The total startup time becomes
66 m + 39 m = 105 ms as a typical value. Please note that
this calculation is approximated by the presence of the knee
in the vicinity of the transition.
http://onsemi.com
12
相关PDF资料
NCP1216AFORWGEVB BOARD EVAL NCP1216A 35W
NCP1351LEDGEVB EVAL BOARD FOR NCP1351LEDG
NCP3065BBGEVB BOARD EVAL NCP3065 MR16 BOOST
NCP3066SCBCKGEVB EVAL BOARD FOR NCP3066SCBCKG
NCP5005GEVB EVAL BOARD FOR NCP5005G
NCP5006EVB EVAL BOARD FOR NCP5006
NCP5030MTTXGEVB EVAL BOARD FOR NCP5030MTTXG
NCP5602EVB EVAL BOARD FOR NCP5602
相关代理商/技术参数
NCP1028P065G 功能描述:电流型 PWM 控制器 NCP1028 65 KHZ RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
NCP1028P100G 功能描述:电流型 PWM 控制器 NCP1028 100 KHZ RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
NCP1028PL065R2G 功能描述:交流/直流开关转换器 ANA 1 FREQ GULLWING RoHS:否 制造商:STMicroelectronics 输出电压:800 V 输入/电源电压(最大值):23.5 V 输入/电源电压(最小值):11.5 V 开关频率:115 kHz 电源电流:1.6 mA 工作温度范围:- 40 C to + 150 C 安装风格:SMD/SMT 封装 / 箱体:SSO-10 封装:Reel
NCP102MBGEVB 功能描述:电源管理IC开发工具 NCP102 4W MOTHERBRD EVB RoHS:否 制造商:Maxim Integrated 产品:Evaluation Kits 类型:Battery Management 工具用于评估:MAX17710GB 输入电压: 输出电压:1.8 V
NCP102SNT1G 功能描述:低压差稳压器 - LDO LDO LINR REG CONTRL RoHS:否 制造商:Texas Instruments 最大输入电压:36 V 输出电压:1.4 V to 20.5 V 回动电压(最大值):307 mV 输出电流:1 A 负载调节:0.3 % 输出端数量: 输出类型:Fixed 最大工作温度:+ 125 C 安装风格:SMD/SMT 封装 / 箱体:VQFN-20
NCP1030 制造商:ONSEMI 制造商全称:ON Semiconductor 功能描述:Low Power PWM Controller with On-Chip Power Switch and Startup Circuits for 48V Telecom Systems
NCP1030_06 制造商:ONSEMI 制造商全称:ON Semiconductor 功能描述:Low Power PWM Controller with On−Chip Power Switch and Startup Circuits for 48V Telecom Systems
NCP10301 制造商:ONSEMI 制造商全称:ON Semiconductor 功能描述:AC-DC Offline Switching Controllers/Regulators